您现在的位置: 365建站网 > 365文章 > java多线程使用方法和实例

java多线程使用方法和实例

文章来源:365jz.com     点击数:228    更新时间:2018-10-30 09:45   参与评论


如果对什么是线程、什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内。

用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现。说这个话其实只有一半对,因为反应“多角色”的程序代码,最起码每个角色要给他一个线程吧,否则连实际场景都无法模拟,当然也没法说能用单线程来实现:比如最常见的“生产者,消费者模型”。

很多人都对其中的一些概念不够明确,如同步、并发等等,让我们先建立一个数据字典,以免产生误会。

  • 多线程:指的是这个程序(一个进程)运行时产生了不止一个线程

  • 并行与并发:

    • 并行:多个cpu实例或者多台机器同时执行一段处理逻辑,是真正的同时。

    • 并发:通过cpu调度算法,让用户看上去同时执行,实际上从cpu操作层面不是真正的同时。并发往往在场景中有公用的资源,那么针对这个公用的资源往往产生瓶颈,我们会用TPS或者QPS来反应这个系统的处理能力。


并发与并行

  • 线程安全:经常用来描绘一段代码。指在并发的情况之下,该代码经过多线程使用,线程的调度顺序不影响任何结果。这个时候使用多线程,我们只需要关注系统的内存,cpu是不是够用即可。反过来,线程不安全就意味着线程的调度顺序会影响最终结果,如不加事务的转账代码:

    void transferMoney(User from, User to, float amount){
      to.setMoney(to.getBalance() + amount);
      from.setMoney(from.getBalance() - amount);
    }
  • 同步:Java中的同步指的是通过人为的控制和调度,保证共享资源的多线程访问成为线程安全,来保证结果的准确。如上面的代码简单加入@synchronized关键字。在保证结果准确的同时,提高性能,才是优秀的程序。线程安全的优先级高于性能。

好了,让我们开始吧。我准备分成几部分来总结涉及到多线程的内容:

  1. 扎好马步:线程的状态

  2. 内功心法:每个对象都有的方法(机制)

  3. 太祖长拳:基本线程类

  4. 九阴真经:高级多线程控制类

扎好马步:线程的状态

先来两张图:


线程状态


线程状态转换


各种状态一目了然,值得一提的是"blocked"这个状态:
线程在Running的过程中可能会遇到阻塞(Blocked)情况

  1. 调用join()和sleep()方法,sleep()时间结束或被打断,join()中断,IO完成都会回到Runnable状态,等待JVM的调度。

  2. 调用wait(),使该线程处于等待池(wait blocked pool),直到notify()/notifyAll(),线程被唤醒被放到锁定池(lock blocked pool ),释放同步锁使线程回到可运行状态(Runnable)

  3. 对Running状态的线程加同步锁(Synchronized)使其进入(lock blocked pool ),同步锁被释放进入可运行状态(Runnable)。

此外,在runnable状态的线程是处于被调度的线程,此时的调度顺序是不一定的。Thread类中的yield方法可以让一个running状态的线程转入runnable。

内功心法:每个对象都有的方法(机制)

synchronized, wait, notify 是任何对象都具有的同步工具。让我们先来了解他们


monitor


他们是应用于同步问题的人工线程调度工具。讲其本质,首先就要明确monitor的概念,Java中的每个对象都有一个监视器,来监测并发代码的重入。在非多线程编码时该监视器不发挥作用,反之如果在synchronized 范围内,监视器发挥作用。

wait/notify必须存在于synchronized块中。并且,这三个关键字针对的是同一个监视器(某对象的监视器)。这意味着wait之后,其他线程可以进入同步块执行。

当某代码并不持有监视器的使用权时(如图中5的状态,即脱离同步块)去wait或notify,会抛出java.lang.IllegalMonitorStateException。也包括在synchronized块中去调用另一个对象的wait/notify,因为不同对象的监视器不同,同样会抛出此异常。

再讲用法:

  • synchronized单独使用:

    • 代码块:如下,在多线程环境下,synchronized块中的方法获取了lock实例的monitor,如果实例相同,那么只有一个线程能执行该块内容


      public class Thread1 implements Runnable {
         Object lock;   public void run() {  
             synchronized(lock){
               ..do something
             }
         }
      }


    • 直接用于方法: 相当于上面代码中用lock来锁定的效果,实际获取的是Thread1类的monitor。更进一步,如果修饰的是static方法,则锁定该类所有实例。

      public class Thread1 implements Runnable {   public synchronized void run() {  
              ..do something
         }
      }
  • synchronized, wait, notify结合:典型场景生产者消费者问题


    /**
       * 生产者生产出来的产品交给店员   */
      public synchronized void produce()
      {      if(this.product >= MAX_PRODUCT)
          {          try
              {
                  wait();  
                  System.out.println("产品已满,请稍候再生产");
              }          catch(InterruptedException e)
              {
                  e.printStackTrace();
              }          return;
          }      this.product++;
          System.out.println("生产者生产第" + this.product + "个产品.");
          notifyAll();   //通知等待区的消费者可以取出产品了  }  /**
       * 消费者从店员取产品   */
      public synchronized void consume()
      {      if(this.product <= MIN_PRODUCT)
          {          try 
              {
                  wait(); 
                  System.out.println("缺货,稍候再取");
              } 
              catch (InterruptedException e) 
              {
                  e.printStackTrace();
              }          return;
          }
    
          System.out.println("消费者取走了第" + this.product + "个产品.");      this.product--;
          notifyAll();   //通知等待去的生产者可以生产产品了
      }


    volatile

    多线程的内存模型:main memory(主存)、working memory(线程栈),在处理数据时,线程会把值从主存load到本地栈,完成操作后再save回去(volatile关键词的作用:每次针对该变量的操作都激发一次load and save)。


volatile

针对多线程使用的变量如果不是volatile或者final修饰的,很有可能产生不可预知的结果(另一个线程修改了这个值,但是之后在某线程看到的是修改之前的值)。其实道理上讲同一实例的同一属性本身只有一个副本。但是多线程是会缓存值的,本质上,volatile就是不去缓存,直接取值。在线程安全的情况下加volatile会牺牲性能。

太祖长拳:基本线程类

基本线程类指的是Thread类,Runnable接口,Callable接口
Thread 类实现了Runnable接口,启动一个线程的方法:

 MyThread my = new MyThread();
  my.start();

Thread类相关方法:


//当前线程可转让cpu控制权,让别的就绪状态线程运行(切换)public static Thread.yield() 
//暂停一段时间public static Thread.sleep()  
//在一个线程中调用other.join(),将等待other执行完后才继续本线程。    public join()//后两个函数皆可以被打断public interrupte()


关于中断:它并不像stop方法那样会中断一个正在运行的线程。线程会不时地检测中断标识位,以判断线程是否应该被中断(中断标识值是否为true)。终端只会影响到wait状态、sleep状态和join状态。被打断的线程会抛出InterruptedException。
Thread.interrupted()检查当前线程是否发生中断,返回boolean
synchronized在获锁的过程中是不能被中断的。

中断是一个状态!interrupt()方法只是将这个状态置为true而已。所以说正常运行的程序不去检测状态,就不会终止,而wait等阻塞方法会去检查并抛出异常。如果在正常运行的程序中添加while(!Thread.interrupted()) ,则同样可以在中断后离开代码体

Thread类最佳实践
写的时候最好要设置线程名称 Thread.name,并设置线程组 ThreadGroup,目的是方便管理。在出现问题的时候,打印线程栈 (jstack -pid) 一眼就可以看出是哪个线程出的问题,这个线程是干什么的。

如何获取线程中的异常


不能用try,catch来获取线程中的异常

Runnable

与Thread类似

Callable

future模式:并发模式的一种,可以有两种形式,即无阻塞和阻塞,分别是isDone和get。其中Future对象用来存放该线程的返回值以及状态

ExecutorService e = Executors.newFixedThreadPool(3); //submit方法有多重参数版本,及支持callable也能够支持runnable接口类型.Future future = e.submit(new myCallable());
future.isDone() //return true,false 无阻塞future.get() // return 返回值,阻塞直到该线程运行结束

九阴真经:高级多线程控制类

以上都属于内功心法,接下来是实际项目中常用到的工具了,Java1.5提供了一个非常高效实用的多线程包:java.util.concurrent, 提供了大量高级工具,可以帮助开发者编写高效、易维护、结构清晰的Java多线程程序。

1.ThreadLocal类

用处:保存线程的独立变量。对一个线程类(继承自Thread)
当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。常用于用户登录控制,如记录session信息。

实现:每个Thread都持有一个TreadLocalMap类型的变量(该类是一个轻量级的Map,功能与map一样,区别是桶里放的是entry而不是entry的链表。功能还是一个map。)以本身为key,以目标为value。
主要方法是get()和set(T a),set之后在map里维护一个threadLocal -> a,get时将a返回。ThreadLocal是一个特殊的容器。

2.原子类(AtomicInteger、AtomicBoolean……)

如果使用atomic wrapper class如atomicInteger,或者使用自己保证原子的操作,则等同于synchronized

//返回值为booleanAtomicInteger.compareAndSet(int expect,int update)

该方法可用于实现乐观锁,考虑文中最初提到的如下场景:a给b付款10元,a扣了10元,b要加10元。此时c给b2元,但是b的加十元代码约为:

if(b.value.compareAndSet(old, value)){   return ;
}else{   //try again   // if that fails, rollback and log}

AtomicReference
对于AtomicReference 来讲,也许对象会出现,属性丢失的情况,即oldObject == current,但是oldObject.getPropertyA != current.getPropertyA。
这时候,AtomicStampedReference就派上用场了。这也是一个很常用的思路,即加上版本号

3.Lock类 

lock: 在java.util.concurrent包内。共有三个实现:

ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock

主要目的是和synchronized一样, 两者都是为了解决同步问题,处理资源争端而产生的技术。功能类似但有一些区别。

区别如下:

lock更灵活,可以自由定义多把锁的枷锁解锁顺序(synchronized要按照先加的后解顺序)
提供多种加锁方案,lock 阻塞式, trylock 无阻塞式, lockInterruptily 可打断式, 还有trylock的带超时时间版本。
本质上和监视器锁(即synchronized是一样的)
能力越大,责任越大,必须控制好加锁和解锁,否则会导致灾难。
和Condition类的结合。
性能更高,对比如下图:


synchronized和Lock性能对比

ReentrantLock    
可重入的意义在于持有锁的线程可以继续持有,并且要释放对等的次数后才真正释放该锁。
使用方法是:

1.先new一个实例

static ReentrantLock r=new ReentrantLock();
2.加锁      
r.lock()或r.lockInterruptibly();

此处也是个不同,后者可被打断。当a线程lock后,b线程阻塞,此时如果是lockInterruptibly,那么在调用b.interrupt()之后,b线程退出阻塞,并放弃对资源的争抢,进入catch块。(如果使用后者,必须throw interruptable exception 或catch)    

3.释放锁   

r.unlock()

必须做!何为必须做呢,要放在finally里面。以防止异常跳出了正常流程,导致灾难。这里补充一个小知识点,finally是可以信任的:经过测试,哪怕是发生了OutofMemoryError,finally块中的语句执行也能够得到保证。

ReentrantReadWriteLock

可重入读写锁(读写锁的一个实现) 

 ReentrantReadWriteLock lock = new ReentrantReadWriteLock()
  ReadLock r = lock.readLock();
  WriteLock w = lock.writeLock();

两者都有lock,unlock方法。写写,写读互斥;读读不互斥。可以实现并发读的高效线程安全代码

4.容器类

这里就讨论比较常用的两个:

BlockingQueue
ConcurrentHashMap

BlockingQueue
阻塞队列。该类是java.util.concurrent包下的重要类,通过对Queue的学习可以得知,这个queue是单向队列,可以在队列头添加元素和在队尾删除或取出元素。类似于一个管  道,特别适用于先进先出策略的一些应用场景。普通的queue接口主要实现有PriorityQueue(优先队列),有兴趣可以研究

BlockingQueue在队列的基础上添加了多线程协作的功能:


BlockingQueue


除了传统的queue功能(表格左边的两列)之外,还提供了阻塞接口put和take,带超时功能的阻塞接口offer和poll。put会在队列满的时候阻塞,直到有空间时被唤醒;take在队 列空的时候阻塞,直到有东西拿的时候才被唤醒。用于生产者-消费者模型尤其好用,堪称神器。

常见的阻塞队列有:

ArrayListBlockingQueue
LinkedListBlockingQueue
DelayQueue
SynchronousQueue

ConcurrentHashMap
高效的线程安全哈希map。请对比hashTable , concurrentHashMap, HashMap

5.管理类

管理类的概念比较泛,用于管理线程,本身不是多线程的,但提供了一些机制来利用上述的工具做一些封装。
了解到的值得一提的管理类:ThreadPoolExecutor和 JMX框架下的系统级管理类 ThreadMXBean
ThreadPoolExecutor
如果不了解这个类,应该了解前面提到的ExecutorService,开一个自己的线程池非常方便:


ExecutorService e = Executors.newCachedThreadPool();
    ExecutorService e = Executors.newSingleThreadExecutor();
    ExecutorService e = Executors.newFixedThreadPool(3);    // 第一种是可变大小线程池,按照任务数来分配线程,    // 第二种是单线程池,相当于FixedThreadPool(1)    // 第三种是固定大小线程池。    // 然后运行
    e.execute(new MyRunnableImpl());


该类内部是通过ThreadPoolExecutor实现的,掌握该类有助于理解线程池的管理,本质上,他们都是ThreadPoolExecutor类的各种实现版本。请参见javadoc:


ThreadPoolExecutor参数解释


翻译一下:


corePoolSize:池内线程初始值与最小值,就算是空闲状态,也会保持该数量线程。
maximumPoolSize:线程最大值,线程的增长始终不会超过该值。
keepAliveTime:当池内线程数高于corePoolSize时,经过多少时间多余的空闲线程才会被回收。回收前处于wait状态
unit:
时间单位,可以使用TimeUnit的实例,如TimeUnit.MILLISECONDS 
workQueue:待入任务(Runnable)的等待场所,该参数主要影响调度策略,如公平与否,是否产生饿死(starving)
threadFactory:线程工厂类,有默认实现,如果有自定义的需要则需要自己实现ThreadFactory接口并作为参数传入。


Java多线程实现的方式有四种

1.继承Thread类,重写run方法

2.实现Runnable接口,重写run方法,实现Runnable接口的实现类的实例对象作为Thread构造函数的target

3.通过Callable和FutureTask创建线程

4.通过线程池创建线程


前面两种可以归结为一类:无返回值,原因很简单,通过重写run方法,run方式的返回值是void,所以没有办法返回结果 

后面两种可以归结成一类:有返回值,通过Callable接口,就要实现call方法,这个方法的返回值是Object,所以返回的结果可以放在Object对象中


方式1:继承Thread类的线程实现方式如下:


public class ThreadDemo01 extends Thread{
    public ThreadDemo01(){
        //编写子类的构造方法,可缺省
    }
    public void run(){
        //编写自己的线程代码
        System.out.println(Thread.currentThread().getName());
    }
    public static void main(String[] args){ 
        ThreadDemo01 threadDemo01 = new ThreadDemo01(); 
        threadDemo01.setName("我是自定义的线程1");
        threadDemo01.start();       
        System.out.println(Thread.currentThread().toString());  
    }
}

程序结果: 

Thread[main,5,main] 

我是自定义的线程1


线程实现方式2:通过实现Runnable接口,实现run方法,接口的实现类的实例作为Thread的target作为参数传入带参的Thread构造函数,通过调用start()方法启动线程


public class ThreadDemo02 {
    public static void main(String[] args){ 
        System.out.println(Thread.currentThread().getName());
        Thread t1 = new Thread(new MyThread());
        t1.start(); 
    }
}
class MyThread implements Runnable{
    @Override
    public void run() {
        // TODO Auto-generated method stub
        System.out.println(Thread.currentThread().getName()+"-->我是通过实现接口的线程实现方式!");
    }   
}

程序运行结果: 

main 

Thread-0–>我是通过实现接口的线程实现方式!


线程实现方式3:通过Callable和FutureTask创建线程 

a:创建Callable接口的实现类 ,并实现Call方法 

b:创建Callable实现类的实现,使用FutureTask类包装Callable对象,该FutureTask对象封装了Callable对象的Call方法的返回值 

c:使用FutureTask对象作为Thread对象的target创建并启动线程 

d:调用FutureTask对象的get()来获取子线程执行结束的返回值


public class ThreadDemo03 {
    /**
     * @param args
     */
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Callable<Object> oneCallable = new Tickets<Object>();
        FutureTask<Object> oneTask = new FutureTask<Object>(oneCallable);
        Thread t = new Thread(oneTask);
        System.out.println(Thread.currentThread().getName());
        t.start();
    }
}
class Tickets<Object> implements Callable<Object>{
    //重写call方法
    @Override
    public Object call() throws Exception {
        // TODO Auto-generated method stub
        System.out.println(Thread.currentThread().getName()+"-->我是通过实现Callable接口通过FutureTask包装器来实现的线程");
        return null;
    }   
}

程序运行结果: 

main 

Thread-0–>我是通过实现Callable接口通过FutureTask包装器来实现的线程


线程实现方式4:通过线程池创建线程


public class ThreadDemo05{
    private static int POOL_NUM = 10;     //线程池数量
    /**
     * @param args
     * @throws InterruptedException 
     */
    public static void main(String[] args) throws InterruptedException {
        // TODO Auto-generated method stub
        ExecutorService executorService = Executors.newFixedThreadPool(5);  
        for(int i = 0; i<POOL_NUM; i++)  
        {  
            RunnableThread thread = new RunnableThread();
            //Thread.sleep(1000);
            executorService.execute(thread);  
        }
        //关闭线程池
        executorService.shutdown(); 
    }   
}
class RunnableThread implements Runnable  
{     
    @Override
    public void run()  
    {  
        System.out.println("通过线程池方式创建的线程:" + Thread.currentThread().getName() + " ");  
    }  
}

程序运行结果: 

通过线程池方式创建的线程:pool-1-thread-3 

通过线程池方式创建的线程:pool-1-thread-4 

通过线程池方式创建的线程:pool-1-thread-1 

通过线程池方式创建的线程:pool-1-thread-5 

通过线程池方式创建的线程:pool-1-thread-2 

通过线程池方式创建的线程:pool-1-thread-5 

通过线程池方式创建的线程:pool-1-thread-1 

通过线程池方式创建的线程:pool-1-thread-4 

通过线程池方式创建的线程:pool-1-thread-3 

通过线程池方式创建的线程:pool-1-thread-2


ExecutorService、Callable都是属于Executor框架。返回结果的线程是在JDK1.5中引入的新特征,还有Future接口也是属于这个框架,有了这种特征得到返回值就很方便了。 

通过分析可以知道,他同样也是实现了Callable接口,实现了Call方法,所以有返回值。这也就是正好符合了前面所说的两种分类


执行Callable任务后,可以获取一个Future的对象,在该对象上调用get就可以获取到Callable任务返回的Object了。get方法是阻塞的,即:线程无返回结果,get方法会一直等待。


再介绍Executors类:提供了一系列工厂方法用于创建线程池,返回的线程池都实现了ExecutorService接口。


public static ExecutorService newFixedThreadPool(int nThreads) 

创建固定数目线程的线程池。

public static ExecutorService newCachedThreadPool() 

创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。

public static ExecutorService newSingleThreadExecutor() 

创建一个单线程化的Executor。

public static ScheduledExecutorService newScheduledThreadPool(int 

corePoolSize) 

创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。

ExecutoreService提供了submit()方法,传递一个Callable,或Runnable,返回Future。如果Executor后台线程池还没有完成Callable的计算,这调用返回Future对象的get()方法,会阻塞直到计算完成。


如对本文有疑问,请提交到交流论坛,广大热心网友会为你解答!! 点击进入论坛

发表评论 (228人查看0条评论)
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
昵称:
最新评论
------分隔线----------------------------

快速入口

· 365软件
· 杰创官网
· 建站工具
· 网站大全

其它栏目

· 建站教程
· 365学习

业务咨询

· 技术支持
· 服务时间:9:00-18:00
365建站网二维码

Powered by 365建站网 RSS地图 HTML地图

copyright © 2013-2024 版权所有 鄂ICP备17013400号